Music Tag Annotation and Clustering Using Latent Music Semantic Analysis

نویسندگان

  • Ju-Chiang Wang
  • Meng-Sung Wu
  • Hsin-Min Wang
  • Shyh-Kang Jeng
چکیده

Music tags include different types of musical information. The tags of same or different types can be assigned together by human to a specific song. This may lead to some specific tag co-occurrence patterns among auditorily similar songs. In this paper, we propose a novel generative approach via Latent Music Semantic Analysis (LMSA) to model and predict the tag co-occurrence pattern of a song. The LMSA-based approach jointly models two types of features, namely, auditory music features and tag-based text features. We employ a Gaussian mixture model (GMM) or a codebook to represent the auditory feature references and a tag-based music semantic model to model the tag co-occurrence patterns given the GMM-based or vector quantized auditory feature representation. We demonstrate the capability of the LMSA-based approach in music semantic exploration and music tag clustering. In addition, the results of music tag annotation experiments show that our method outperforms the baseline Codeword Bernoulli Average (CBA) method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Music Mood Representations from Social Tags

This paper presents findings about mood representations. We aim to analyze how do people tag music by mood, to create representations based on this data and to study the agreement between experts and a large community. For this purpose, we create a semantic mood space from last.fm tags using Latent Semantic Analysis. With an unsupervised clustering approach, we derive from this space an ideal c...

متن کامل

Clustering of Musical Genres

The aim of this paper is to better understand the landscape of musical genres. We use public tag data (folksonomies) to these discover genres, and make use of APIs from the music site Last.fm gather tag data for songs and artists. To be comprehensive, a uniform sampling of tag documents will be used. API calls are slow, however, while there are about 100 million artists on the database; so we s...

متن کامل

Finding the Hidden Gems: Recommending Untagged Music

We have developed a novel hybrid representation for Music Information Retrieval. Our representation is built by incorporating audio content into the tag space in a tag-track matrix, and then learning hybrid concepts using latent semantic analysis. We apply this representation to the task of music recommendation, using similarity-based retrieval from a query music track. We also develop a new ap...

متن کامل

Automatic Music Tagging With Time Series Models

We present a system for automatic music annotation that leverages temporal (e.g., rhythmical) aspects as well as timbral content. Our system estimates a dynamic texture mixture (DTM) density over times series of acoustic features (instead of on individual features) for each tag in a semantic vocabulary. When analyzing a new song, our system processes the time series of acoustic features of the ...

متن کامل

Posterior Weighted Bernoulli Mixture Model for Music Tag Annotation and Retrieval

Music tags provide different types of semantic information about music. Recently, automatic music tagging has generated a great deal of interest among researchers in the field of music information retrieval. In this paper, we propose a posterior weighted Bernoulli mixture model (PWBMM) that automatically annotates a song with tags, or retrieves relevant songs given a semantic tag. The PWBMM app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011